
Audit of Aleo's consensus

October 30th, 2023

Introduction

On October 9th, 2023, zkSecurity was tasked to audit Aleo's consensus for use in the Aleo blockchain. Two

consultants worked over the next 3 weeks to review Aleo's codebase for security issues.

The code was found to be thoroughly documented and of high quality. In addition, the team acted in a highly

cooperative way and was key in helping us �nd a number of the issues in this report.

Below, we go through the scope and a few general recommendations. The rest of this report includes an overview of

the protocol as well as the �ndings.

Scope

zkSecurity used the `testnet3-audit-zks` branch (commit `9234cbee73666c7e6d00dfbdbcb947a244a43818`) of

the snarkOS repository.

Included in scope was:

Aleo's Bullshark (the partially synchronous version) and Narwhal implementation for resharing and coming to

consensus on a global order of transactions.

Aleo's high-level consensus logic in snarkOS (within some folders of snarkOS/node)

Aleo's ledger service, that has dependencies living in the snarkVM repository.

Note that some logic (like the puzzle mechanism) was out of scope, as it was planned for replacement.

General Recommendations

In addition to addressing the �ndings listed in this report, we offer the following strategic recommendations to Aleo:

Specify the protocol implemented. Bullshark, as it was introduced in two white papers, is loosely speci�ed.

Furthermore, the implementation of Aleo represents an important departure from the protocol described in the

papers: the commit rule (discussed in �nding Commit Flow Can Lead To Safety Violation), the garbage collection

(discussed in �nding Garbage Collection Can Block Commits From Happening), and the dynamic committee feature

(discussed in �nding Dynamic Committee Feature is Not Safe), all deviate from the whitepaper version of Bullshark.

This makes it hard to understand the protocol, and to reason about its security. We strongly recommend that Aleo

writes a speci�cation of the protocol implemented.

Create test vectors. It might bene�t Aleo to implement an embedded-DSL, as well as test vectors, to test a suite of

interesting scenarios. For example, a number of scenarios like the one described in Commit Flow Can Lead To Safety

https://www.aleo.org/
https://github.com/AleoHQ/snarkOS
https://arxiv.org/abs/2209.05633
https://arxiv.org/pdf/2105.11827.pdf
https://github.com/AleoHQ/snarkVM

Violation could be useful to heuristically check that properties from the Bullshark protocol are well-understood and

preserved in the implementation.

Bullshark in Aleo

In this section we give an overview of the consensus protocol implemented by Aleo, namely Bullshark.

The Bullshark consensus protocol is the evolution of a long lineage of consensus protocol, perhaps starting with the

very �rst practical one (PBFT). The idea remains more or less the same in most (all?) of these protocols: the set of

participant is �xed, and they advance together in rounds:

1. In the �rst round, a "leader" broadcasts a proposal.

2. In the second round, participants vote on the proposal.

3. In the third round, participants vote on votes.

If you see enough participants who have voted on a proposal, and enough participants have seen that (the "vote on

votes" part), then we can "commit" to a proposal. In blockchain lingo, committing a proposal would be to �nalize and

apply the transactions it contains to the blockchain's state.

This basic 3-step committing process was never really improved. Instead, most major optimizations have been

obtained by using pipelining techniques. For example, The Hotstuff protocol introduced pipelining of this �ow by

having a leader propose in every round. More recently, Bullshark introduced another type of pipelining by having every

participant propose in every round. (Another recent protocol Shoal introduces both pipelining techniques in a single

protocol.)

More concretely, a round of bullshark between participants (of which only can be malicious) goes like this:

1. At the start of a round, every participant broadcasts a new batch of transactions (which can be thought of as a

block) to every other participant. (See at the end of the list how the batch was created.)

2. If you receive a batch from someone, make sure that it's the only batch you've seen from them in this round, store

it, and sign it.

3. Once you collect signatures on your batch, this produces a certi�cate for your batch, which you can

broadcast to everyone.

4. Once you observe certi�cates in this round, produce a batch of transactions for the next round in which

you also include the observed certi�cates. This should look like a directed acyclic graph (or DAG) of

batches.

5. Go back to step 1.

To explain concrete examples in the rest of this report, we use the following types of diagrams:

3f + 1 f

2f + 1

2f + 1
2f + 1

https://arxiv.org/abs/1803.05069
https://arxiv.org/pdf/2306.03058.pdf

This still doesn't let us know how participants agree on what gets committed. The "commit rule" of Bullshark is quite

simple: in every even round (e.g. round 2, 4, etc.) a leader is chosen (for example, via a round-robin election), and their

DAG (their batch and all the batches they link to transitively) gets committed if there's certi�cates referring to it.

A leader's batch is called an anchor, and it is possible that an anchor does not get committed in an even round. But if

an anchor gets committed by some honest nodes, it will always be committed later on by all other honest nodes. This

is because a committed anchor will always be included in the DAG of another anchor.

This property is called the quorum intersection property and can be proven quite easily. If an anchor is committed in

an even round , it is because it was referred to by certi�cates in round . Let's call this set . Any block

(including anchor block) in round will have to include certi�cates from round . let's call that set .

We need to show that , or in other words that the intersection contains at least one certi�cate, or in other

words that when a block is committed then there'll always be a path leading to that block in any block from the next

even round. This is not too hard to show: the multiset which is 1 vertex

more than the total number of vertices in a round and thus has some multiplicities.

As leaders and their anchors can be slow to be proposed and certi�ed, timeouts are added to ensure that participants

will wait a certain amount of time for the leader to show up before moving to the next round. Concretely, in even

rounds, participants will wait to see an anchor to certify, and will wait for a certi�ed anchor to include in their next

f + 1

i f + 1 i + 1 A

i + 2 2f + 1 i + 1 B

A ∩ B = ∅

∣A ∪ B∣ = (f + 1) + (2f + 1) = 3f + 2

proposal. In odd rounds, participants will wait to see votes for an anchor to certify, and will wait for certi�ed votes for

an anchor to include in their next proposal.

One last (important) subtlety is that as described, the protocol allows for a node's storage to grow ad-in�nitum if they

do not observe any commit. To prevent this to happen, a garbage collection protocol is added in order to prune older

parts of the DAG as it grows. As such, when a commit happens, the DAG will be traversed up to some "garbage

collection frontier", and everything on the left of that frontier will be discarded.

Findings

Below are listed the �ndings found during the engagement. High severity �ndings can be seen as so-called "priority

0" issues that need �xing (potentially urgently). Medium severity �ndings are most often serious �ndings that have

less impact (or are harder to exploit) than high-severity �ndings. Low severity �ndings are most often exploitable in

contrived scenarios, if at all, but still warrant re�ection. Findings marked as informational are general comments that

did not �t any of the other criteria.

ID COMPONENT NAME RISK

00 snarkOS/node/narwhal/bft
Commit Flow Can Lead To
Safety Violation

High

01 snarkOS/node/narwhal/primary
Lack of Dag Containment
Could Lead To Safety
Violation

High

02 snarkOS/node/narwhal
Dynamic Committee
Feature is Not Safe

High

03 snarkOS/node/narwhal
Liveness Issue Due To
Intolerance To Malleable
Certi�cates

High

04 snarkOS/node/narwhal
Garbage Collection Can
Block Commits From
Happening

Medium

06 snarkOS/node/narwhal
Byzantine Behavior is Not
Detected

Low

08 snarkVM/ledger/committee
Potentially Biased Leader
Election

Informational

09 snarkVM/ledger
Redundant Serialization
Could Lead To Manipulating
Unsanitized Inputs

Informational

00 - Commit Flow Can Lead To Safety Violation

snarkOS/node/narwhal/bft

High

Description. As of now, the Bullshark commit �ow can lead to situations where different participants have a different

commit history.

Let's look at the following scenario (pictured in the diagram below): An anchor at round gets committed. This

means that in round there are certi�ed votes that are produced. In other words, in round , batches that

include in their edges are certi�ed.

In Bullshark, a commit leads a validator to deterministically traverse the DAG pointed by the anchor, and to restart the

committing process at every anchor encountered. Yet, in Aleo, the entire DAG --including all previous non-committed

anchors-- is committed as a single block. As we will see, this is the source of the problem.

Next, imagine that the leader () is byzantine. Thus, they decide to not release the certi�cate they produced in round

. The other validators will move to the next round without , and nobody but the byzantine leader will commit .

In round , another validator (in the diagram) produces an anchor , which then gets committed (as it gets

certi�ed votes in round).

At this point, validators will commit to as soon as they see certi�ed votes in round . Before this happens,

the byzantine validator can send their certi�ed vote from round (or round) to a select group of validators to get

them to commit as a block at height before they get to commit . This group will then commit as an

additional block at height .

The other group (in the diagram) will commit and as a single block at height .

“Note: due to the dynamic committee, this scenario is slightly different, what really happens is that the �rst group

will most likely produce a different committee after the �rst commit, which might lead to a different leader being

elected in round and thus the block not being committed.”

A 1 2
3 f + 1 3 f + 1

A 1 2f + 1

V 1

3 V 1 A 1

4 V 4 A 2 f + 1
5

A 2 f + 1 5
V 1 3 4

A 1 i A 2 A 2

i + 1

V 4 A 2 A1 i

4

There are two important subtleties to understand the attack here:

1. The quorum intersection property of Bullshark does not ensure that all participants will always see anchors being

committed in the same order. It only ensures that if an anchor is committed, then any future anchor will have a

path to it in its DAG.

2. It is possible to form a certi�cate that doesn't get included in validators' DAG, either because you are too slow to

broadcast it (and validators will move on to the next round including other certi�cates) or because you are

byzantine and choose to broadcast your certi�cate at a later time.

To emphasis, the previous attack works because:

The last validator never sees the certi�cates from .

In round , the byzantine validator obtains a certi�cate for their batch but doesn't get it included by other

validators

In round or validators and see the certi�cate of V1 in round which leads them to commit .

Recommendations. Follow the commit logic of the Bullshark paper by restarting the commit process at every anchor,

when traversing a DAG that is to be committed.

V 4 V 1

3 V 1

4 5 V 2 V 3 3 A 1

01 - Lack of Dag Containment Could Lead To Safety Violation

snarkOS/node/narwhal/primary

High

Description. A BFT protocol's resilience to forking (having multiple honest participants share contradicting views)

comes from its safety property. In turn, the safety proof of a BFT protocol relies on several properties and

assumptions. For example, Bullshark relies on the assumption that a participant in its protocol cannot obtain two

different certi�ed batches of transactions in the same round.

In the Narwhal paper (which Bullshark builds on top of), this property is called containment:

“Lemma A.5. The DAG protocol satis�es Containment.”

The same paper includes the following containment proof, which includes (with our emphasize on) the rules that are

important to encode in a node implementation:

“Proof. Every block contains its author and round number and honest validators do not sign two different blocks

in the same round from the same author. Therefore, since signatures are required to certify a block, two

blocks in the same round from the same author can never be certi�ed. Thus, for every certi�ed block that honest

validators locally store, they always agree on the set of digest in the block (references to blocks from the previous

round). The lemma follows by recursively applying the above argument starting from the block .”

Later on, it is used in the safety proof:

“Lemma 2. Any two honest validators commit the same sequence of block leaders. Since after ordering a block

leader each validator orders the leader’s causal history by some pre-de�ne deterministic rule, we get that by the

Containment property of Narwhal all honest validators agree on the total order of the DAG’s blocks.”

The current node implementation we looked at does not have a participant store batch proposals (also called

collections in other implementations). Instead, a participant who receives a batch will store the batch's

transmissions/transactions. As such, a participant will happily sign different batches from the same author in the

same round, violating the containment property.

In practice, this means that a malicious participant could create two certi�cates for two contradicting blocks at the

same round.

Note that we could not �nd a way to exploit this to fork the protocol, due to the fact that a byzantine validator cannot

get certi�ed votes on two con�icting proposals. This is because none of the two partitions of validators (of size

) will be able to certify their proposals (containing one of the byzantine proposals) as this will contradict the

view of the other partition that needs to sign their proposal.

2f + 1

b′

f + 1

f + 1

https://arxiv.org/pdf/2105.11827.pdf

None-the-less, this would lead to a liveness issue similar to the one described in Liveness Issue Due To Intolerance To

Malleable Certi�cates. Depending on how the latter issue is �xed, or how other subtleties could come into play, we

deemed that this �nding might lead to safety issues if not �xed.

Reproduction steps. One can observe that participants happily sign different batches from the same author in the

same round by adding the following code to the `Primary::propose_batch` function:

 // Generate the local timestamp for batch

 let timestamp = now();

 // Prepare the transmission IDs.

- let transmission_ids = transmissions.keys().copied().collect();

+ let transmission_ids: indexmap::IndexSet<TransmissionID<N>> =

transmissions.keys().copied().collect();

 // Prepare the certificate IDs.

- let certificate_ids = previous_certificates.into_iter().map(|c|

c.certificate_id()).collect();

+ let certificate_ids: indexmap::IndexSet<Field<N>> =

+ previous_certificates.into_iter().map(|c| c.certificate_id()).collect();

 // Sign the batch header.

- let batch_header = BatchHeader::new(private_key, round, timestamp, transmission_ids,

certificate_ids, rng)?;

+ let batch_header =

+ BatchHeader::new(private_key, round, timestamp, transmission_ids.clone(),

certificate_ids.clone(), rng)?;

+

 // Construct the proposal.

- let proposal =

- Proposal::new(self.ledger.get_previous_committee_for_round(round)?,

batch_header.clone(), transmissions)?;

+ let proposal = Proposal::new(

+ self.ledger.get_previous_committee_for_round(round)?,

+ batch_header.clone(),

+ transmissions.clone(),

+)?;

+ println!(

+ "ZKSEC: proposed batch id {} in round {} with {} transactions",

+ batch_header.batch_id(),

+ batch_header.round(),

+ transmission_ids.len()

+);

 // Broadcast the batch to all validators for signing.

 self.gateway.broadcast(Event::BatchPropose(batch_header.into()));

+

+ // ZKSEC: create another one for fun!

+ if self.evil {

+ let mut transmissions2 = transmissions.clone();

+ transmissions2.pop();

+ let transmission_ids2: indexmap::IndexSet<TransmissionID<N>> =

transmissions2.keys().copied().collect();

+ let batch_header2 =

+ BatchHeader::new(private_key, round, timestamp, transmission_ids2.clone(),

certificate_ids, rng)?;

+

+ println!(

+ "ZKSEC: _also_ proposed batch id {} in round {} with {} transactions",

+ batch_header2.batch_id(),

+ batch_header2.round(),

+ transmission_ids2.len()

+);

+ self.gateway.broadcast(Event::BatchPropose(batch_header2.into()));

+ }

+

and the following code in `Primary::process_batch_signature_from_peer`:

 // Retrieve the signature and timestamp.

 let BatchSignature { batch_id, signature, timestamp } = batch_signature;

+ // ZKSEC

+ if true {

+ println!(

+ "ZKSEC: received signature from {} for batch id {}",

+ signature.compute_key().to_address(),

+ batch_id,

+)

+ }

+

Running an end-to-end test like `test_state_coherence` (`cargo test --package snarkos-node-narwhal --test

bft_e2e -- test_state_coherence --exact --nocapture --ignored`) can expose that participants will happily

sign two different batches in the same round:

ZKSEC: proposed batch id

6424465404037277811535918421886783076581165244697445935535915255730835352828field in round 20
with 250 transactions

ZKSEC: _also_ proposed batch id

2130383929461709954064380322325477721698409715003851135305445666084395401543field in round 20

with 249 transactions

// ...

ZKSEC: received signature from aleo18fsar6muz3ksa68gz0qp5vkxm7vh07f7pctmkzxwlf9adxzhw59qwy7fwm

for batch id 6424465404037277811535918421886783076581165244697445935535915255730835352828field
// ...

ZKSEC: received signature from aleo18fsar6muz3ksa68gz0qp5vkxm7vh07f7pctmkzxwlf9adxzhw59qwy7fwm

for batch id 2130383929461709954064380322325477721698409715003851135305445666084395401543field

Recommendations. To help avoid signing two batches from the same validator in the same round, have nodes store a

hashmap of authors to `(round, batch_id)` tuples, in addition to storing batches' transactions.

02 - Dynamic Committee Feature is Not Safe

snarkOS/node/narwhal

High

Description. Aleo's implementation of Bullshark includes a new feature which allows the validator set to update itself

on every new block created. Where a block is an object containing a DAG of batches of transactions that are being

committed, and potentially including several anchor batches (as explained in Commit Flow Can Lead To Safety

Violation").

This dynamic committee feature is not included in the Bullshark or Narwhal papers, and is not speci�ed by Aleo,

which makes it hard to understand if the protocol is safely designed and implemented. Potential issues could exist

where the liveness of the network is impacted by nodes being stuck by not being able to understand what the current

set of validators is, or worse safety issues could exist where the dynamic change of the quorum threshold required to

commit leads to forks.

Currently, the recon�guration works by allowing a change of committee at every single block. This committee of

validators is dictated by the execution of smart contracts triggered by the transactions of a committed block. A

different committee means that different validators, with different stakes, will now be part of advancing the

consensus protocol. We summarize how recon�guration affects the protocol in the following diagram:

Recon�guring a validator set is arguably one of the most tricky features to get right. In the rest of this section we give

a number of examples of unexpected or surprising behavior that comes from the addition of a dynamic committee.

Handling outdated quorum size. As the set of validators as well as their stake can change dynamically, and validators

might have missed commits, the value of (resp.) to commit (resp. certify) vertices might appear too low

or too high to a validator.

This can result in a scenario where a validator could wrongly commit to a batch: a validator could believe that a

certi�ed batch is both an anchor and has received enough certi�ed votes due to being on an outdated committee.

While this issue seems addressable by �xing Commit Flow Can Lead To Safety Violation", it still can lead to previous

non-committed batches being committed. For example, if the previous scenario leads to triggering a commit, which

leads to traversing a DAG to a previous anchor, that anchor will be committed (due to being in the path) even if it

should not have been committed.

Handling new validators. Could a node be stuck because they can't get enough messages to advance in the protocol,

due to the new validators not being able to communicate with the lagging node? As can be seen in

`process_batch_certificate_from_peer`, new validators messages are discarded:

async fn process_batch_certificate_from_peer(

f + 1 2f + 1

 &self,

 peer_ip: SocketAddr,

 certificate: BatchCertificate<N>,

) -> Result<()> {

 // TRUNCATED...

 if !self.gateway.is_authorized_validator_address(author) {

 // Proceed to disconnect the validator.

 self.gateway.disconnect(peer_ip);

 bail!("Malicious peer - Received a batch certificate from a non-committee member

({author})");

where `is_authorized_validator_address` can only consider the previous and current committee:

 /// Returns `true` if the given address is an authorized validator.

 pub fn is_authorized_validator_address(&self, validator_address: Address<N>) -> bool {

 // Determine if the validator address is a member of the previous or current committee.

 // We allow leniency in this validation check in order to accommodate these two

scenarios:

 // 1. New validators should be able to connect immediately once bonded as a committee

member.

 // 2. Existing validators must remain connected until they are no longer bonded as a

committee member.

 // (i.e. meaning they must stay online until the next block has been produced)

 self.ledger

 .get_previous_committee_for_round(self.ledger.latest_round())

 .map_or(false, |committee| committee.is_committee_member(validator_address))

 || self

 .ledger

 .current_committee()

 .map_or(false, |committee| committee.is_committee_member(validator_address))

 }

Handling timers. Timeout-related logic designed in non-dynamic settings might not be working as intended in

dynamic settings. This might affect the liveness of the protocol. For example, lagging validators will wait and attempt

to include the wrong certi�cates in their edges in odd rounds:

// Compute the stake for the leader certificate.

let (stake_with_leader, stake_without_leader) =

 self.compute_stake_for_leader_certificate(leader_certificate_id, current_certificates,

&previous_committee);

// Return 'true' if any of the following conditions hold:

stake_with_leader >= previous_committee.availability_threshold()

 || stake_without_leader >= previous_committee.quorum_threshold()

 || self.is_timer_expired()

as well as in even rounds:

// Determine the leader of the current round.

let leader = match previous_committee.get_leader(current_round) {

 Ok(leader) => leader,

 Err(e) => {

 error!("BFT failed to compute the leader for the even round {current_round} - {e}");

 return false;

 }

};

// Find and set the leader certificate, if the leader was present in the current even round.

let leader_certificate = current_certificates.iter().find(|certificate| certificate.author() ==

leader);

*self.leader_certificate.write() = leader_certificate.cloned();

self.is_even_round_ready_for_next_round(current_certificates, previous_committee, current_round)

Nodes will also perform checks on incorrect thresholds:

if self.is_timer_expired() {

 debug!("BFT (timer expired) - Checking for quorum threshold (without the leader)");

 // Retrieve the certificate authors.

 let authors = certificates.into_iter().map(|c| c.author()).collect();

 // Determine if the quorum threshold is reached.

 return committee.is_quorum_threshold_reached(&authors);

}

Handling new connections. In the layers below, connecting to new validators (or ignoring old ones) might lead to

unexpected behavior. For example, in `Primary::propose_batch`, the primary will not propose a batch if they are not

connected to enough validators (according to their own view of the validator set):

// Check if the primary is connected to enough validators to reach quorum threshold.

{

 // Retrieve the committee to check against.

 let committee = self.ledger.get_previous_committee_for_round(round)?;

 // Retrieve the connected validator addresses.

 let mut connected_validators = self.gateway.connected_addresses();

 // Append the primary to the set.

 connected_validators.insert(self.gateway.account().address());

 // If quorum threshold is not reached, return early.

 if !committee.is_quorum_threshold_reached(&connected_validators) {

 debug!(

 "Primary is safely skipping a batch proposal {}",

 "(please connect to more validators)".dimmed()

);

 trace!("Primary is connected to {} validators", connected_validators.len() - 1);

 return Ok(());

 }

}

Recommendations. This �nding is a tricky one as it appears that �xing the dynamic committee feature is not trivial.

Ensuring that safety is correctly guarded throughout validator set changes, especially as validators might have an

outdated view of the committee while advancing through newer rounds of the protocol, is not easy.

We recommend specifying a solution and writing up a proof that it is safe. Note also that recently Sui Lutris came out

with a description of committee recon�gurations in a similar protocol.

https://github.com/MystenLabs/sui/blob/main/doc/paper/sui-lutris.pdf

03 - Liveness Issue Due To Intolerance To Malleable Certi�cates

snarkOS/node/narwhal

High

Description. There's a few occasions in which a validator can observe other validators' batch certi�cates. For

example, validators send certi�cates they create to each other during a round, or at the beginning of the round they

also send each other batches that contain batch certi�cates from the previous round.

When that happens, a validator moves on to processing each batch certi�cate it sees. If it's a new certi�cate that it

hasn't seen, and if it's the �rst certi�cate that it sees for this author and at this round, then it will pass it to the BFT

module.

But before that, it will ensure that it has enough information to construct the directed acyclic graph (DAG) that the

batch certi�cate points to. It does that by recursively traversing the DAG and collecting each batch certi�cate that is

missing.

The problem is that participants in Bullshark can easily create different certi�cates for the same batch. This is

because a certi�cate is determined by its signatures, and a participant can include a different set of

signatures to form a different certi�cate for a batch.

So it is possible that a validator has a speci�c batch certi�cate for a speci�c round in their storage, but needs to fetch

what looks like a different batch certi�cate for the same batch. Unfortunately, the current implementation does not

allow storing different `(round, author, certificate_id)` and `(round, author, certificate_id')` tuples

where `certificate_id != certificate_id'`:

 pub fn check_certificate(

 &self,

 certificate: &BatchCertificate<N>,

 transmissions: HashMap<TransmissionID<N>, Transmission<N>>,

) -> Result<HashMap<TransmissionID<N>, Transmission<N>>> {

 // TRUNCATED...

 if self.contains_certificate_in_round_from(round, certificate.author()) {

 bail!("Certificate with this author for round {round} already exists in storage

{gc_log}")

 }

This leads to a liveness issue that can be exploited by a single byzantine participant:

1. Alice, a byzantine leader in round , collects signatures which allows her to create two different certi�cates

of signatures: and .

2. Alice shares with participants, and with other participants.

2f + 1

2f + 1

i 2f + 2
2f + 1 cert 1 cert 2

cert 1 f + 1 cert 2 f + 1

3. These participants will continue to wait to receive certi�cates in round . They will move to round once they

manage to collect certi�cates (including one of Alice's certi�cates).

4. In round , validators will broadcast their proposals/batches and attempt to collect signatures on

them.

5. They will fail to do so as at most nodes will be able to validate their

batch, which is not enough (a certi�cate requires signatures).

�. The network will be stuck inde�nitely.

Note that if the implementation allowed storing different certi�cates for the same batch, then a graver safety issue

could happen. To understand why, continue reading.

Once the missing batch certi�cates have been fetched, and the BFT module has been involved, the `update_dag`

function is called. That function reconstructs the DAG that the batch certi�cate points to and then tries to commit it.

When committing a DAG, a validator stops at the garbage collection frontier (where everything on the left of that

frontier has been pruned and cannot be committed) as well as at anchors that have already been committed.

The DAG to commit is constructed using the helper function `order_dag_with_dfs`:

 /// Returns the subdag of batch certificates to commit.

 fn order_dag_with_dfs<const ALLOW_LEDGER_ACCESS: bool>(

 &self,

 leader_certificate: BatchCertificate<N>,

) -> Result<BTreeMap<u64, IndexSet<BatchCertificate<N>>>> {

 // TRUNCATED...

 while let Some(certificate) = buffer.pop() {

 // TRUNCATED...

 for previous_certificate_id in certificate.previous_certificate_ids().iter().rev() {

 // TRUNCATED...

 // If the previous certificate was recently committed, continue.

 if self.dag.read().is_recently_committed(previous_round,

*previous_certificate_id) {

 continue;

 }

As one can see, it uses the notion of a certi�cate ID to detect committed certi�cates.

The problem is that a certi�cate ID is computed using the signatures it contains:

pub fn compute_certificate_id(batch_id: Field<N>, signatures: &IndexMap<Signature<N>, i64>) ->

Result<Field<N>> {

 let mut preimage = Vec::new();

 // Insert the batch ID.

 batch_id.write_le(&mut preimage)?;

 // Insert the signatures.

 for (signature, timestamp) in signatures {

 // Insert the signature.

i i + 1
2f + 1

i + 1 2f + 1

n − (f + 1) = (3f + 1) − (f + 1) = 2f
2f + 1

 signature.write_le(&mut preimage)?;

 // Insert the timestamp.

 timestamp.write_le(&mut preimage)?;

 }

 // Hash the preimage.

 N::hash_bhp1024(&preimage.to_bits_le())

 }

Since a byzantine validator can create different valid certi�cates for an anchor they propose (as we've seen in the

previously discussed liveness issue), it is possible that a validator ends up reconstructing parts of a DAG (from a

batch certi�cate) that looks slightly different from a DAG that it has already committed before.

Traversing parts of that DAG, the committing function might not properly stop at batches that it had already

committed, potentially recommitting entire parts of a DAG.

Recommendations. As certi�cates are naturally malleable, one could �x this issue by making sure to always interpret

DAGs without their certi�cates, and only using certi�cates to ensure that a batch is usable in the BFT layer.

To summarize, the issue comes from the fact that the protocol fails to understand that two batches can be the same,

in spite of having different certi�cates. As such encoding these equalities correctly should �x the issue.

04 - Garbage Collection Can Block Commits From Happening

snarkOS/node/narwhal

Medium

Description. Without the concept of garbage collection, nodes in Bullshark might grow their local DAG ad-in�nitum if

no commit happens. Due to this, garbage collection (GC) is added to upperbound the memory requirement of a node

to realistic numbers.

Commits are missed either because there's no proposals made by the leader in commit rounds (the even rounds), or

because they are too slow to get it certi�ed, or because of other similar issues (see Commit Flow Can Lead To Safety

Violation for another example).

The GC logic of Aleo's Bullshark implementation is relevant in two places:

When a validator advances in the protocol: Whenever the round of a validator is incremented (due to the natural

�ow of the protocol), an internal "GC round" is incremented. This GC round is implemented as exactly 50 rounds

below the current round, and incrementing it triggers pruning of old data (certi�cates and potentially dangling

transactions).

When a validator commits a batch: A validator commiting a batch will traverse the DAG pointed at by the batch.

During the traversal, they will ensure that they never go further than anchors they've already committed, or further

than a "GC frontier" which is de�ned as 50 rounds below the highest committed round so far.

One problem with the previous GC rules is that what is being pruned in the �rst part is not necessarily content that will

never be committed in the second part.

For example, an anchor in round could get committed by some validators but not all, and if no further commit

happens for more than 50 rounds then some of these validators won't be able to commit due to having pruned all

information (transactions and certi�cates) related to and needed to commit the anchor.

A 1 2

A 1

A 1

Recommendations. The Bullshark whitepaper uses timestamps instead of a �xed number of rounds to de�ne what

can be garbage collected:

“Since by the properties of the underling reliable broadcast all parties agree on the causal histories of the leaders,

once parties agree which leaders to order they also agree what rounds to garbage collect.”

This approach might be able to prevent validators from garbage collecting batches that will need to be committed in

the future.

06 - Byzantine Behavior is Not Detected

snarkOS/node/narwhal

Low

Description. Bullshark works based on a number of assumptions, including that its participants comprise a majority

of honest nodes (or non-byzantine nodes).

Such nodes must follow some rules to the letter. As long as these rules are followed, and the threshold of tolerable

byzantine nodes is not exceeded, the protocol is safe (no forks happen) and live (transactions continue to be

committed).

That being said, the protocol should attempt to detect when nodes are not following these rules (to potentially

penalize them or investigate bugs) to the extent of what's acceptable and possible.

For example, when receiving a certi�cate from a different peer, a validator will silently replace any previous certi�cate

seen from this peer at the same round, even if different:

/// Inserts a certificate into the DAG.

pub fn insert(&mut self, certificate: BatchCertificate<N>) {

 let round = certificate.round();

 let author = certificate.author();

 // If the certificate was not recently committed, insert it into the DAG.

 if !self.is_recently_committed(round, certificate.certificate_id()) {

 // Insert the certificate into the DAG.

 let _previous = self.graph.entry(round).or_default().insert(author, certificate);

More seriously, and as described in Lack of Dag Containment Could Lead To Safety Violation, a validator will happily

handle different proposals at the same round from the same author.

Recommendations. We recommend logging any such instances as at worst they can provide insight as to who is

acting maliciously, and at best they can lead to detecting bugs in the Bullshark implementation early.

08 - Potentially Biased Leader Election

snarkVM/ledger/committee

Informational

Description. To choose the leader for a round, given a current committee, the hash (of some metadata) modulo the

total stake is taken as a needle to point to the leader's stake.

In pseudo-code the logic looks like that:

seed = [starting_round, current_round, total_stake]

digest = hash_to_group_psd4(seed).x_coordinate()

stake_index = digest % total_stake

current_stake_index = 0

for candidate, stake in candidates:

 current_stake_index += stake

 if stake_index < current_stake_index:

 leader = candidate

 break

return leader

The `digest % total_stake` operation, if required to be fair, needs to uniformly span the range of numbers from 0

to `total_stake`.

This is of course not always the case as `total_stake` is different depending on the committee. As such some

members of a committee will have more (or less) chance to be elected than others.

This might be an acceptable bias, especially as the Bullshark protocol provides a property called "chain quality". From

the Narwhal paper:

“A fourth step provides Chain Quality by imposing restrictions on block creation rate. Each block from a validator

contains a round number, and must include a quorum of certi�cates from the previous round to be valid. As a

result, a fraction of honest validators’ blocks are included in any proposal. Additionally, a validator cannot

advance to a Mempool round before some honest ones concluded the previous round, preventing �ooding. As a

result Narwhal provides the consensus layer censroship-resistence (as de�ned in HoneyBadger BFT) without the

need for using any additional mechanisms such as threshold encryption.”

That being said, leader bias might have other issues such as a leader intentionally targeting commits that will get

them re-elected, which in turns might get them to collect more coinbase rewards or slow down the protocol.

09 - Redundant Serialization Could Lead To Manipulating Unsanitized Inputs

snarkVM/ledger

Informational

Description. Serialization (and deserialization) of data structures is done manually for every different type that can be

exchanged through the network.

Structures that are being serialized often contain �elds that represent cached values that can be derived from the

structure itself. While these �elds do not necessarily need to be serialized, as they can be recomputed, they are

almost always serialized. This means that deserialization must be done carefully to ensure that any of these cached

values actually contain the correct value.

For example, a `BatchHeader` structure contains a `batch_id` �eld which represents a hash of its content. Thus,

deserialization from bytes will recompute that value and check that it matches the deserialized value:

impl<N: Network> FromBytes for BatchHeader<N> {

 /// Reads the batch header from the buffer.

 fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {

 // TRUNCATED..

 // Read the batch ID.

 let batch_id = Field::read_le(&mut reader)?;

 // TRUNCATED...

 // Construct the batch.

 let batch = Self::from(author, round, timestamp, transmission_ids,

previous_certificate_ids, signature)

 .map_err(|e| error(e.to_string()))?;

 // Return the batch.

 match batch.batch_id == batch_id {

 true => Ok(batch),

 false => Err(error("Invalid batch ID")),

 }

This pattern is error-prone as if someone forgets to check these �elds, they could contain incorrect values, which in

turn could lead to unexpected behavior and potentially vulnerabilities.

Recommendations. Using macros, or macro-based libraries like Serde (which has a `#[serde(skip)]` helper to

avoid serialization redundant �elds) reduce human errors by reducing the amount of manual (de)serialization code

that has to be written or reviewed.

https://serde.rs/

In addition, avoiding serialization of redundant �elds forces the deserialization to always recompute these �elds,

which in turn reduces the risk of deserialization bugs where someone forgets to check that these �elds contain the

correct values.

